
CIB Bank Zrt. CIB Bank Ltd. H-1027 Budapest, Medve utca 4–14. H-1995 Budapest Telephone: (06 1) 423 1000 Fax: (06 1)
489 6500Court of Registration: Company Court of the Metropolitan Court of Budapest Company registration no.: Cg. 01-10-041004
Tax number: 10136915-4-44 Group tax number:: 17781028-5-44 Group Community VAT number: HU17781028 Stock exchange
membership: Budapest Stock Exchange Ltd. Operating licence number: 957/1997/F, III/41. 044-10/2002. BIC (SWIFT) code:
CIBHHUHB

Electronic Card Transactions on the Internet

CIB Bank Zrt.

Internet-based Card Acceptance Service
Technical Documentation

Version no. 1.47

Documentation for CIB Bank’s electronic commerce solution based on internet technology
The methods and solutions described in this documentation constitute the basis for the
eCommerce service provided by CIB. Within the framework of the TLS-based card
acceptance system, CIB does not authorise the application of methods other than those
described in this document.

CONTENTS

Electronic Card Transactions on the Internet ... 1
Introduction ... 4
Frequently used terms .. 4
The payment process .. 5

1.1. Authorisation ... 5
Messages following authorisation .. 7

Message structure ... 7
1.1. Field definitions ... 8

CRYPTO ... 8
DATA ... 9
PID ... 9
TRID ... 9
UID .. 10
AMO .. 10
CUR ... 10
TS .. 11
RC .. 11
RT .. 11
ANUM ... 11
AUTH ... 12
URL .. 12
LANG ... 12
HISTORY .. 13
EXTRA01 .. 13

Contents of message types ... 13
Transaction initialisation (MSGT10) ... 14
Transaction initialisation response (MSGT11) .. 14
Redirecting the customer to the payment page (MSGT20) ... 14
Redirecting the customer from the payment page to the merchant (MSGT21) 14
Inquiring about the transaction outcome with confirmation and closing (MSGT32) 14
Inquiring about the transaction outcome (MSGT33) ... 15
Inquiring about the transaction outcome, response (MSGT31) ... 15
Inquiry of transaction statuses (MSGT37) .. 15
Inquiry on transaction statuses, response (MSGT38)... 15
Transaction status inquiry (MSGT70) ... 16
Transaction status inquiry, response (MSGT71) ... 16
Reversal of authorised transaction (MSGT74) .. 16
Reversal of authorised transaction, response (MSGT75) ... 16
Retransfer of debited transaction (MSGT78) ... 16
Retransfer of debited transaction, response (MSGT79) ... 17
Setting a partial amount to be refunded from the debited transaction amount (MSGT80) 17
Setting a partial amount to be refunded from the debited transaction amount, response
(MSGT81) .. 17

Other error codes undefined in the message type ... 18
Encryption of messages ... 19

1.1. Encryption key ... 19
Encryption algorithm .. 20

Cryptographic functions library .. 24
Encryption (ekiEncodeUrl) .. 24
Decrypting (ekiDecodeUrl) ... 25
Key structure ... 25
Key information inquiry (ekiGetKeyInfo) .. 26
Version number inquiry (ekiGetLibVersion) ... 26

Encryption application (sakide) ... 27
3D Secure... 28
Possible errors, suggestions .. 28
Contact information .. 29

Introduction

This document contains the developer’s description of the online card-acquiring service operated by
CIB Bank Zrt.

CIB Bank Zrt. supports the ‘three-party payment model’, that is, the card data necessary for payment
are only visible to the bank, whereas the customer’s personal data are only visible to the merchant.
The correlation between the two data sets is ensured by the transaction identifier, which must be
unique for each payment.

Frequently used terms

Below are the definitions of the terms used in this documentation:

Merchant a natural or legal person who has a valid eCommerce contract
Webshop an IT service operated by the Merchant (or its agent), in which various products and

services can be purchased using a bank card
Customer the person who executes the card payment, or his/her equivalent in IT terms (e.g.

web browser)
Authorisation separation of the purchase amount on the customer’s card
Debit finalisation of the authorisation, reservation of the separated amount (the crediting

on the merchant’s account does not take place immediately)
Reversal withdrawal of the authorisation, making the separated amount freely available
Refund reverse booking of the debited transaction
Transaction the full payment process, also including the steps that do not require the customer’s
presence
3D Secure an optional service that increases payment security by assigning to the transaction a

unique code that the customer uses independently of the card (e.g. receives it from
the issuing bank in an sms message).

Initialisation a message sent by the webshop to the bank’s server regarding the request for
payment

Rerouting changing the connection terminals of the customer’s browser to the bank’s server
Redirection changing the connection terminals of the customer’s browser to the webshop
Query identifying the status of the transaction and the payment at any specific time
Closing confirming the authorisation phase of the transaction The bank always reverses any

unclosed transactions.
Encryption key The file(s) made available by the bank to the Merchant, which, during the

communication between the Merchant and the Bank, ensure confidentiality of the
messages sent and received

(3)DES Data Encryption Standard. Algorithm of the encryption used during Merchant-Bank
communication

TLS Transport Layer Security. Algorithm of the encryption used during Customer-Bank
communication

The payment process

1.1. Authorisation

The process described below only covers the payment part of the full lifecycle (authorisation, in
other words blocking or reservation) of the transaction. The transaction withdrawal/retransfer is
described below.

1. The customer chooses the necessary goods in the merchant’s webshop (hereinafter:
“store”), registers and notifies the merchant of his/her intent to pay.

2. The store saves the data necessary for payment, assigs a unique identifier (TRID) to it and
then sends it to the bank’s server (MSGT10)

3. The bank verifies and registers the request, then sends a confirmation message on the result
(MSGT11)

4. In the case of a negative confirmation, the store considers the transaction closed. Optionally,
it may provide an opportunity for launching a new transaction.

5. In the case of a positive confirmation, the store directs the customer to the payment page on
the bank’s server (MSGT20)

6. On the payment page the customer enters the card data necessary for payment
7. Depending on the type of the bank card, the bank may send the customer to the card issuer

for further verification (see section ‘3D Secure’). After verification, the customer returns to
the bank

8. Based on the information received from the customer and from the issuing bank, the bank
initiates a reservation on the customer’s card.

9. After the reservation is completed, the bank returns the customer to the store, that is, to the
address provided by the store (MSGT21)

10. The store requests information from the bank’s server regarding the successful completion
of the reservation (MSGT32)

11. The bank returns the reservation data to the store in a response message (MSGT31)
12. The store informs the customer of the data received from the bank

If the store does not close (MSGT32) the result of the transaction (10) within a pre-defined time (by
default 10-15 minutes) following the return of the customer (9), the bank initiates the release of the
reservation (reversal) at the issuing bank.
The store may, at any time following a successful initiation, inquire on the transaction status
(MSGT33). The structure of the bank’s response to this (MSGT31) is the same as the confirmation
message, although it is different in that it does not entail the closing of the transaction. If this is
supported by the store’s application, an inquiry on the transaction status should be sent at regular
intervals following the redirection of the customer. If the bank confirms a failure due to time-out, the
store may also close it in its own system as an unsuccessful reservation attempt.

The steps in the payment process are shown in the following figure:

Authorization flow

Bank MerchantCustomer

Payment intent

Initialize

transaction

Send MSGT10

message

Receive MSGT11

message

Generate new

transaction

RC=00 RC=01

Send MSGT20

message

Wait for 1-2

minutes

Send MSGT33

message

Receive customer

on paypage

Transaction result

Authorization,

redirection of

customer

Populate card

data

Receive MSGT31

message
RC=PR RC=TO

Receive MSGT21

message

Send MSGT32

message

Transaction result

Receive MSGT31

message

Inform customer

Payment end

yes

yes

Paralel process

yes

Messages following authorisation

In the case of a successful authorisation the merchant may apply the following supplementary
messages to the transaction:

 inquire on the transaction status at any time (MSGT70). The value of the STATUS field in the
bank’s response (MSGT71) indicates that it is under reservation, withdrawn, debited or
retransferred (see description of the STATUS field in message 71).

 withdraw the reservation (MSGT74). No debiting takes place as a result of this, and the
customer receives back the amount reserved on his/her account

 set a partial amount to be refunded from the debited transaction amount (MSGT80)

 refund a debited transaction amount (MSGT78), in which case the default amount or the
present partial amount will be refunded

Message structure

The three-party model requires that, during the transaction (purchase process), only two of the three
parties be in connection with each other at the same time. In the course of this, the customer
typically communicates with the merchant and the bank via a website, while communication
between the merchant and the bank takes place via encrypted messages, the contents of which will
be detailed at a later point. The messages are sent to the bank, unless they refer to the redirection of
the customer, using the HTTP GET or the POST method.

The general message format is as follows:

https://server.dom/path/to/script.ext?key1=value1&key2=value2...

where key<n> is the parameter name, and value<n> is the value assigned to it.

Encryption is 3DES-based in merchant-bank communication and TLS-based in customer-bank
communication. The key for the 3DES encryption is provided by the bank, separately for test and live
operations. The encryption module (sakicrypt) provided by the bank to the operator, as well as the
program (sakide) suitable for testing it are part of the annexes. The steps of the encryption are
described in section 5.2.

The bank’s responses to the merchant’s questions always arrive in the content section of the called
page, even if the http response code is other than 200. The only exceptional case when the bank’s
message arrives in the parameters of the called URL is when the customer is returned from the
paypage to the merchant (MSGT21).

https://server.dom/path/to/script.ext?key1=value1&key2=value2

1.1. Field definitions

Fields used in individual messages

Meaning of the field ID Length

Encryption type CRYPTO 1

Encrypted message DATA Max. 255

Message type MSGT 2

Shop ID PID 7

Transaction ID TRID 16

Customer ID UID 11

Amount AMO Max. 16

Currency CUR 3

Timestamp TS 14

Response Code RC 2

Response Text RT Max. 255

Authorisation Number ANUM Max. 6

Authorisation Type AUTH 1

Card number CNUM Max 19

URL URL Max. 255

Language Code LANG 2

History HISTORY Max. 255

Comment EXTRA01 Max. 50

Detailed explanation of fields:

CRYPTO

Length: 1
Regular term: [13]

Description: The type of the encryption. This only appears in the encrypted message, indicating to
the recipient the method used for encrypting the message. In merchant<->bank communication its
value is always 1.

Accepted values:

 1: 3DES (only in merchant-bank communication)
 3: TLS (only in customer-bank communication)

DATA

Length: max. 255
Regular term: [a-zA-Z0-9/%]{0,255}

Description: The encrypted version of the original message. This only appears in the encrypted
message, together with the PID and the CRYPTO values.

PID

Length: 7
Regular term: [a-zA-Z]{3}[01][0-9]{3}

Description: The merchant’s identifier. contained by all the messages within the communication
with the bank. The first 3 characters identify the store (service provider), and the other 4 figures
identify the individual shops within the store. The first of the 4 figures also identifies the default
currency of the virtual POS terminal. The following values are currently accepted:

 0: HUF
 1: EUR

Currently, the terminals only accept the default currencies (see the CUR field).

TRID

Length: 16
Regular term: [0-9]{16}

Description: Unique identifier of the transaction. It identifies the transaction in its whole length (from
initialisation to closing), and it is a mandatory component of each unencrypted message. It is
generated by the store prior to initialising an intended payment. The use of a pseudo-random
number generator during the generation process is recommended. It must not contain only spaces.

UID

Length: 11
Regular term: [a-zA-Z0-9\-_]{11}

Description: The customer’s identifier in the merchant’s system. If registration is not obligatory in the
store, the use of a constant value (e.g. CIB12345678) is also permitted. It must not contain a
sequence of dashes.

AMO

Length: max. 16
Regular term: [0-9 \.]{16}

Description: The sum payable. The number of the obligatory decimals depends on the currency of the
transaction (0 for HUF, 2 for EUR). The fractional part must be separated from the integer part by a
point. In the case of an integer amount there is neither a decimal point, nor a fractional part.
An individual message may also contain multiple amounts, each of which has an AMO prefix.

Examples:

 HUF 1,000: 1000
 EUR 10: 10.00

CUR

Length: 3
Regular term: [a-zA-Z]{3}

Description: The currency of the transaction in the alphabetical format stipulated by the ISO 3166
standard.

Accepted values:

 HUF (Hungarian forint)
 EUR (Euro)

TS

Length: 14
Regular term: [0-9]{14}

Description: Time of transaction initialisation on the merchant’s page. The time must be entered in
the following format: YYYYMMDDHHMISS

Example:

2012 August 31, 23:59:59: 20120831235959

RC

Length: 2
Regular term: [A-Z0-9]{2}

Description: Result of the execution of the current request. The exact interpretation of the possible
values depends on the message type, and therefore these are presented in detail under each
message type.

Possible values:

RC values: Successful execution
Anything else: An error occurred during execution.

RT

Length: max. 255
Regular term: [.]{0,255}

Description: Textual interpretation of the response code in case of authorisation for the merchant
and the customer. The language of the message is the same as the one defined in the LANG
parameter, and may contain urlencoded latin2 (for european languages) or unicode (non-european)
characters.

ANUM

Length: max. 6
Regular term: [a-zA-Z0-9]{0,6}

Description: Authorisation approval identifier on the issuer’s side. Since ANUM is not a unique
identifier at the issuer either, in case of any questions it should be associated with the amount and
the time of the transaction.

CNUM

Length: max 19
Regular term: [0-9|X]{6}[X]+ [0-9|X]{4}

Description: Masked value of the credit/debit card entered on the paypage. Without explicit
permission (default), all the card numbers are masked.

AUTH

Length: 1
Regular term: [0]

Description: Type of the authorisation channel. The 0 value indicates a web authorisation.

URL

Length: max. 255
Regular term: http[s]?://.+\..+/
Description: the merchant’s url to which the bank directs the customer’s browser after the payment
is completed. This field cannot contain any parameters

(...?param1=value1¶m2=value2...), it must contain an absolute path and it must
consist of a string that can be evaluated as an URL, in addition to the regular term (based on RFC
2396 and RFC 2732)

Example: http://server.domain.com/path/to/script.ext

LANG

Length: 2
Regular term: [a-zA-Z]{2}

Description: The code of the language used during the transaction. The payment page displayed in
the customer’s browser and the result of the authorisation can be read in this language.

Accepted values:

 HU: Hungarian

 EN: English
 DE: German
 IT: Italian
 FR: French
 ES: Spanish

http://server.domain.com/path/to/script.ext

 PT: Portuguese
 PL: Polish
 CZ: Czech
 SK: Slovak

 RO: Romanian

HISTORY

Length: max. 255
Regular term: [0-9,]{0,255}

Description: A list of individual statuses of the processes executed during the transaction. The
statuses are characterised by codes, reading is from left to right, and the individual statuses are
separated by commas.

Example: 10,11,20,21,30

Possible values in the list:
 10: the customer has arrived at the payment page
 11: the customer has sent the completed payment page
 12: transaction not approved by customer
 14: the acceptor has rejected the authorisation request
 20: the authorisation has started

 21: the authorisation has been successful
 22: the issuer has rejected the authorisation request
 30: the merchant has received the result of the transaction

 55: transaction selected for reversal due to time-out.

 56: successful reversal
 57: unsuccessful reversal

EXTRA01

Length: max. 50
Regular term: [0-9a-zA-Z áéíóöőúüűÁÉÍÓÖŐÚÜŰ"\+!\%/\(\)~`<>#\{\},\.\->*:_\\|\[łŁ$ß¤\]]{0,50}

Description: An optional extra parameter characteristic of the transaction, which helps in identifying
the transaction during merchant settlements.

Contents of message types

The Bank’s eCommerce server interprets the messages indicated in the following list. The listed
parameters are included in the unencrypted message, provision of all the parameters is obligatory,
except for EXTRA01:

Transaction initialisation (MSGT10)

 PID

 TRID

 MSGT, value: 10

 UID

 AMO

 CUR

 TS

 AUTH

 LANG

 URL

 EXTRA01

Transaction initialisation response (MSGT11)

 MSGT, value: 11

 PID

 TRID

 RC, possible values:
o RC values: Successful initialisation
o 01: Initialisation has failed due to other technical reasons
o 02: TRID is already reserved

Redirecting the customer to the payment page (MSGT20)

 MSGT, value: 20

 PID

 TRID

Redirecting the customer from the payment page to the merchant
(MSGT21)

 MSGT, value: 21

 PID

 TRID

Inquiring about the transaction outcome with confirmation and closing
(MSGT32)

 MSGT, value: 32

 PID

 TRID

 AMO

Inquiring about the transaction outcome (MSGT33)

 MSGT, value: 33

 PID

 TRID

 AMO

Inquiring about the transaction outcome, response (MSGT31)

The format of the response is the same if either message 32 or message 33 is requested.

 MSGT, value: 31

 PID

 TRID

 AMO

 RC, possible values:
o RC values: Successful authorisation
o PR: The authorisation has not been completed yet
o TO: Transaction failed due to time-out
o Anything else: Unsuccessful authorisation (the error codes are classified in FAQ)

 RT

 ANUM

 CNUM (applies only to MSGT33 response)

Inquiry of transaction statuses (MSGT37)

 MSGT, value: 37

 PID

 TRID

 AMO

Inquiry on transaction statuses, response (MSGT38)

 MSGT, value: 38

 PID

 RC, possible values:
o RC values: Successful inquiry
o 01: Failed inquiry (in this case HISTORY is empty)

 HISTORY

Transaction status inquiry (MSGT70)

 MSGT, value: 70

 PID

 TRID

 AMO (the originally reserved amount)

Transaction status inquiry, response (MSGT71)

 MSGT, value: 71

 PID

 TRID

 AMO

 RC (result of the original authorisation)

 RT

 STATUS, possible values:
o 10: The transaction has been authorised but not yet debited
o 30: The transaction has been automatically debited
o 40: The transaction has been reversed (using message 74)
o 50: The transaction has been refunded
o 60: The transaction has been closed
o 99: An error occurred during processing

 CURAMO2, its value is the amount to be retransferred

 ANUM

Reversal of authorised transaction (MSGT74)

 MSGT, value: 74

 PID

 TRID

 AMO

Reversal of authorised transaction, response (MSGT75)

 MSGT, value: 75

 PID

 TRID

 AMO

 STATUS (see MSGT71)

Retransfer of debited transaction (MSGT78)

 MSGT, value: 78

 PID

 TRID

 AMO, its value is the debited amount

Retransfer of debited transaction, response (MSGT79)

 MSGT, value: 79

 PID

 TRID

 AMO

 RC (result of the original authorisation)

 RT

 STATUS (see MSGT71)

 ANUM

Setting a partial amount to be refunded from the debited transaction
amount (MSGT80)

 MSGT, value: 80

 PID

 TRID

 AMOORIG, its value is the last set retransferable amount (default value: 0)

 AMONEW, its value is the retransferable amount intended to be set

Setting a partial amount to be refunded from the debited transaction
amount, response (MSGT81)

 MSGT, value: 81

 PID

 TRID

 AMO, its value is the set retransferable amount

 STATUS (see MSGT71)

Other error codes undefined in the message type

If the bank’s server is unable to interpret the received data, the response message will contain an
unencrypted error code. These error codes have the following meanings:

RC=S01: Error during acceptance of the received data.
RC=S02: Data error.
RC=S03: Undecipherable request.
RC=S04: Database error.
RC=S05: Processing error.
RC=S06: Encryption error.
RC=D01: Incorrect parameter.
RC=D02: Undecipherable request.
RC=D03: Wrong order. (Invalid message type request received.)
RC=D04 Unauthorised message type
RC=D05: This message type request has already been served
RC=D06: Unknown transaction.
RC=D07: Incorrect data format.
RC=D08: Data error

Typically, Sxx messages contain errors detected during decryption, and Dxx messages contain errors
detected during the processing following a successful decryption (typically due to recording of
incoming data in non-compliance with the specification).

Encryption of messages

Messages between the merchant and the bank must be sent in encrypted format. The ekiCrypt
functions library and the related sakide application provided by the bank as an attachment to this
documentation can be used for encrypting/decrypting messages. If neither solution is feasible,
encryption may also be implemented in the manner detailed below, using native tools.

1.1. Encryption key

Encryption is 3DES-based. The encryption key file provided by the bank contains the following
information:

Name Length (byte) Description

Key ID 4 File name (EKI’\0’)

Key format version 2 0x00 0x02

STORE ID 4 This is the same as the file name (e.g. in the case
of CIB.des: CIB’\0’)

Time of key generation 4 number of seconds passed since 01.01.1970

First key 8

Second key 8

Initialisation vector 8

In the case of native solutions only the last 3 elements need be taken into account. During the
development cycle the store receives 3 keys:

 Test key: this is necessary for integration testing and it is only valid for the bank’s test server

 Activation key: This is issued by the bank after successful testing, and it is only valid for the
bank’s activation server

Since the test key and the activation key have identical names, these should be kept separately (e.g.
in separate directories).

Encryption algorithm

The use of the sakide utility included in the package and the sakicrypt functions library is
recommended for encryption, although, if necessary, the protocol may also be replaced by native
tools. The following is a description of a message encryption and the related partial result, step by
step.

assembling an unencrypted message

The unencrypted message must contain the parameters indicated in the above description, in any
order, in a parameter=value format, the parameters being combined with ’&’ signs (query string).
The message used in this example is as follows:

PID=IEB0001&TRID=1234567812345678&MSGT=10&UID=IEB00000000&AMO=1000&CUR=HUF&TS=20131

231235959&AUTH=0&LANG=HU&URL=http://dev.bolt.hu/shop/frombank.asp

The key part of the key file used for encryption (the last 24 bytes in groups of 8) is:

00000000 54 E8 17 70 06 E1 18 77 T..p...w

00000008 51 57 C9 3A E0 0A A3 3D QW.:...=

00000010 E4 48 CC 19 CD 62 EC 7E .H...b.~

URL coding of the message

Each character must be URL-encoded, except for the ’&’ and ’=’ characters.

00000000 50 49 44 3D 49 45 42 30 30 30 31 26 54 52 49 44 PID=IEB0001&TRID

00000010 3D 31 32 33 34 35 36 37 38 31 32 33 34 35 36 37 =123456781234567

00000020 38 26 4D 53 47 54 3D 31 30 26 55 49 44 3D 49 45 8&MSGT=10&UID=IE

00000030 42 30 30 30 30 30 30 30 30 26 41 4D 4F 3D 31 30 B00000000&AMO=10

00000040 30 30 26 43 55 52 3D 48 55 46 26 54 53 3D 32 30 00&CUR=HUF&TS=20

00000050 31 33 31 32 33 31 32 33 35 39 35 39 26 41 55 54 131231235959&AUT

00000060 48 3D 30 26 4C 41 4E 47 3D 48 55 26 55 52 4C 3D H=0&LANG=HU&URL=

00000070 68 74 74 70 25 33 41 25 32 46 25 32 46 64 65 76 http%3A%2F%2Fdev

00000080 2E 62 6F 6C 74 2E 68 75 25 32 46 73 68 6F 70 25 .bolt.hu%2Fshop%

00000090 32 46 66 72 6F 6D 62 61 6E 6B 2E 61 73 70 2Ffrombank.asp

Calculating and attaching of a CRC32

A CRC32 checksum must be calculated from the URL-encoded string, and its binary format must be
attached to the string.

The CRC32 value of the above message is: 2CAFE8F8

Attached to the end of the message:

00000000 50 49 44 3D 49 45 42 30 30 30 31 26 54 52 49 44 PID=IEB0001&TRID

00000010 3D 31 32 33 34 35 36 37 38 31 32 33 34 35 36 37 =123456781234567

00000020 38 26 4D 53 47 54 3D 31 30 26 55 49 44 3D 49 45 8&MSGT=10&UID=IE

00000030 42 30 30 30 30 30 30 30 30 26 41 4D 4F 3D 31 30 B00000000&AMO=10

00000040 30 30 26 43 55 52 3D 48 55 46 26 54 53 3D 32 30 00&CUR=HUF&TS=20

00000050 31 33 31 32 33 31 32 33 35 39 35 39 26 41 55 54 131231235959&AUT

00000060 48 3D 30 26 4C 41 4E 47 3D 48 55 26 55 52 4C 3D H=0&LANG=HU&URL=

00000070 68 74 74 70 25 33 41 25 32 46 25 32 46 64 65 76 http%3A%2F%2Fdev

00000080 2E 62 6F 6C 74 2E 68 75 25 32 46 73 68 6F 70 25 .bolt.hu%2Fshop%

00000090 32 46 66 72 6F 6D 62 61 6E 6B 2E 61 73 70 2C AF 2Ffrombank.asp,.

000000A0 E8 F8 ..

Pad for encryption

If the length of the resulting string is not an integer multiple of 8, the binary form of the number of
characters necessary for the supplementation (e.g. in the case of '6’: 0x06) must be added to the end
of a string, the number of characters is often... 0x06 0x06 0x06 0x06 0x06 0x06).

00000000 50 49 44 3D 49 45 42 30 30 30 31 26 54 52 49 44 PID=IEB0001&TRID

00000010 3D 31 32 33 34 35 36 37 38 31 32 33 34 35 36 37 =123456781234567

00000020 38 26 4D 53 47 54 3D 31 30 26 55 49 44 3D 49 45 8&MSGT=10&UID=IE

00000030 42 30 30 30 30 30 30 30 30 26 41 4D 4F 3D 31 30 B00000000&AMO=10

00000040 30 30 26 43 55 52 3D 48 55 46 26 54 53 3D 32 30 00&CUR=HUF&TS=20

00000050 31 33 31 32 33 31 32 33 35 39 35 39 26 41 55 54 131231235959&AUT

00000060 48 3D 30 26 4C 41 4E 47 3D 48 55 26 55 52 4C 3D H=0&LANG=HU&URL=

00000070 68 74 74 70 25 33 41 25 32 46 25 32 46 64 65 76 http%3A%2F%2Fdev

00000080 2E 62 6F 6C 74 2E 68 75 25 32 46 73 68 6F 70 25 .bolt.hu%2Fshop%

00000090 32 46 66 72 6F 6D 62 61 6E 6B 2E 61 73 70 2C AF 2Ffrombank.asp,.

000000A0 E8 F8 06 06 06 06 06 06

3DES encryption

The padded message must be encrypted using the keys available in the key file, based on the 3DES
CBC method.

00000000 4A 48 7B 6A 81 4A 55 52 52 FC 91 14 D0 4A 6D 8E JH{j.JURR....Jm.

00000010 28 4D 46 90 CA 99 66 EF 52 2C 14 3E 7F 85 4A BF (MF...f.R,.>⌂.J.

00000020 C1 84 96 0B 18 D2 83 D2 1E 7F F7 77 E3 C3 1C 7E ⌂.w...~

00000030 AF A3 C4 0D 20 EF 8D 02 64 EA 0F 8E 0C BD 35 7F d.....5⌂

00000040 FA C9 FA 44 A3 33 41 05 3B E4 19 E9 BF 11 4F E5 ...D.3A.;.....O.

00000050 AA C5 A4 40 A1 49 08 49 D5 CA 6F 70 BE F9 DF 80 ...@.I.I..op....

00000060 83 19 C9 7B 20 F7 FD 4F CE E8 9E D8 3B 8A 61 62 ...{ ..O....;.ab

00000070 04 23 7F 23 8F 1A 86 76 40 22 D6 70 07 A3 DF FF .#⌂#...v@".p....

00000080 B4 39 FF 17 ED 73 43 D6 38 DE 2F 8F 83 89 07 71 .9...sC.8./....q

00000090 A3 9E 23 AC 15 63 19 ED 83 C9 CB DE 6C 9F F7 55 ..#..c......l..U

000000A0 88 AD 52 8A 11 40 E4 30 ..R..@.0

Pad for Base64 coding

The received encrypted string must be expanded, in the manner detailed above, to a length divisible
by 3.

00000000 4A 48 7B 6A 81 4A 55 52 52 FC 91 14 D0 4A 6D 8E JH{j.JURR....Jm.

00000010 28 4D 46 90 CA 99 66 EF 52 2C 14 3E 7F 85 4A BF (MF...f.R,.>⌂.J.

00000020 C1 84 96 0B 18 D2 83 D2 1E 7F F7 77 E3 C3 1C 7E ⌂.w...~

00000030 AF A3 C4 0D 20 EF 8D 02 64 EA 0F 8E 0C BD 35 7F d.....5⌂

00000040 FA C9 FA 44 A3 33 41 05 3B E4 19 E9 BF 11 4F E5 ...D.3A.;.....O.

00000050 AA C5 A4 40 A1 49 08 49 D5 CA 6F 70 BE F9 DF 80 ...@.I.I..op....

00000060 83 19 C9 7B 20 F7 FD 4F CE E8 9E D8 3B 8A 61 62 ...{ ..O....;.ab

00000070 04 23 7F 23 8F 1A 86 76 40 22 D6 70 07 A3 DF FF .#⌂#...v@".p....

00000080 B4 39 FF 17 ED 73 43 D6 38 DE 2F 8F 83 89 07 71 .9...sC.8./....q

00000090 A3 9E 23 AC 15 63 19 ED 83 C9 CB DE 6C 9F F7 55 ..#..c......l..U

000000A0 88 AD 52 8A 11 40 E4 30 03 03 03 ..R..@.0...

Base64 coding

Base64-coding of the padded string based on RFC2045:

00000000 53 6B 68 37 61 6F 46 4B 56 56 4A 53 2F 4A 45 55 Skh7aoFKVVJS/JEU

00000010 30 45 70 74 6A 69 68 4E 52 70 44 4B 6D 57 62 76 0EptjihNRpDKmWbv

00000020 55 69 77 55 50 6E 2B 46 53 72 2F 42 68 4A 59 4C UiwUPn+FSr/BhJYL

00000030 47 4E 4B 44 30 68 35 2F 39 33 66 6A 77 78 78 2B GNKD0h5/93fjwxx+

00000040 72 36 50 45 44 53 44 76 6A 51 4A 6B 36 67 2B 4F r6PEDSDvjQJk6g+O

00000050 44 4C 30 31 66 2F 72 4A 2B 6B 53 6A 4D 30 45 46 DL01f/rJ+kSjM0EF

00000060 4F 2B 51 5A 36 62 38 52 54 2B 57 71 78 61 52 41 O+QZ6b8RT+WqxaRA

00000070 6F 55 6B 49 53 64 58 4B 62 33 43 2B 2B 64 2B 41 oUkISdXKb3C++d+A

00000080 67 78 6E 4A 65 79 44 33 2F 55 2F 4F 36 4A 37 59 gxnJeyD3/U/O6J7Y

00000090 4F 34 70 68 59 67 51 6A 66 79 4F 50 47 6F 5A 32 O4phYgQjfyOPGoZ2

000000A0 51 43 4C 57 63 41 65 6A 33 2F 2B 30 4F 66 38 58 QCLWcAej3/+0Of8X

000000B0 37 58 4E 44 31 6A 6A 65 4C 34 2B 44 69 51 64 78 7XND1jjeL4+DiQdx

000000C0 6F 35 34 6A 72 42 56 6A 47 65 32 44 79 63 76 65 o54jrBVjGe2Dycve

000000D0 62 4A 2F 33 56 59 69 74 55 6F 6F 52 51 4F 51 77 bJ/3VYitUooRQOQw

000000E0 41 77 4D 44 AwMD

URL-encoding

The Base64-encoded string must then be URL-encoded (this time all the characters included in it).

00000000 53 6B 68 37 61 6F 46 4B 56 56 4A 53 25 32 46 4A Skh7aoFKVVJS%2FJ

00000010 45 55 30 45 70 74 6A 69 68 4E 52 70 44 4B 6D 57 EU0EptjihNRpDKmW

00000020 62 76 55 69 77 55 50 6E 25 32 42 46 53 72 25 32 bvUiwUPn%2BFSr%2

00000030 46 42 68 4A 59 4C 47 4E 4B 44 30 68 35 25 32 46 FBhJYLGNKD0h5%2F

00000040 39 33 66 6A 77 78 78 25 32 42 72 36 50 45 44 53 93fjwxx%2Br6PEDS

00000050 44 76 6A 51 4A 6B 36 67 25 32 42 4F 44 4C 30 31 DvjQJk6g%2BODL01

00000060 66 25 32 46 72 4A 25 32 42 6B 53 6A 4D 30 45 46 f%2FrJ%2BkSjM0EF

00000070 4F 25 32 42 51 5A 36 62 38 52 54 25 32 42 57 71 O%2BQZ6b8RT%2BWq

00000080 78 61 52 41 6F 55 6B 49 53 64 58 4B 62 33 43 25 xaRAoUkISdXKb3C%

00000090 32 42 25 32 42 64 25 32 42 41 67 78 6E 4A 65 79 2B%2Bd%2BAgxnJey

000000A0 44 33 25 32 46 55 25 32 46 4F 36 4A 37 59 4F 34 D3%2FU%2FO6J7YO4

000000B0 70 68 59 67 51 6A 66 79 4F 50 47 6F 5A 32 51 43 phYgQjfyOPGoZ2QC

000000C0 4C 57 63 41 65 6A 33 25 32 46 25 32 42 30 4F 66 LWcAej3%2F%2B0Of

000000D0 38 58 37 58 4E 44 31 6A 6A 65 4C 34 25 32 42 44 8X7XND1jjeL4%2BD

000000E0 69 51 64 78 6F 35 34 6A 72 42 56 6A 47 65 32 44 iQdxo54jrBVjGe2D

000000F0 79 63 76 65 62 4A 25 32 46 33 56 59 69 74 55 6F ycvebJ%2F3VYitUo

00000100 6F 52 51 4F 51 77 41 77 4D 44 oRQOQwAwMD

Adding a prefix to the message

The following prefix must be inserted in front of the URL code:

PID=%PID%&CRYPTO=1&DATA=

Where %PID% is the identifier provided by the bank to the store. Consequently, the encrypted
message will be the DATA value of the message to be sent.

00000000 50 49 44 3D 49 45 42 30 30 30 31 26 43 52 59 50 PID=IEB0001&CRYP

00000010 54 4F 3D 31 26 44 41 54 41 3D 53 6B 68 37 61 6F TO=1&DATA=Skh7ao

00000020 46 4B 56 56 4A 53 25 32 46 4A 45 55 30 45 70 74 FKVVJS%2FJEU0Ept

00000030 6A 69 68 4E 52 70 44 4B 6D 57 62 76 55 69 77 55 jihNRpDKmWbvUiwU

00000040 50 6E 25 32 42 46 53 72 25 32 46 42 68 4A 59 4C Pn%2BFSr%2FBhJYL

00000050 47 4E 4B 44 30 68 35 25 32 46 39 33 66 6A 77 78 GNKD0h5%2F93fjwx

00000060 78 25 32 42 72 36 50 45 44 53 44 76 6A 51 4A 6B x%2Br6PEDSDvjQJk

00000070 36 67 25 32 42 4F 44 4C 30 31 66 25 32 46 72 4A 6g%2BODL01f%2FrJ

00000080 25 32 42 6B 53 6A 4D 30 45 46 4F 25 32 42 51 5A %2BkSjM0EFO%2BQZ

00000090 36 62 38 52 54 25 32 42 57 71 78 61 52 41 6F 55 6b8RT%2BWqxaRAoU

000000A0 6B 49 53 64 58 4B 62 33 43 25 32 42 25 32 42 64 kISdXKb3C%2B%2Bd

000000B0 25 32 42 41 67 78 6E 4A 65 79 44 33 25 32 46 55 %2BAgxnJeyD3%2FU

000000C0 25 32 46 4F 36 4A 37 59 4F 34 70 68 59 67 51 6A %2FO6J7YO4phYgQj

000000D0 66 79 4F 50 47 6F 5A 32 51 43 4C 57 63 41 65 6A fyOPGoZ2QCLWcAej

000000E0 33 25 32 46 25 32 42 30 4F 66 38 58 37 58 4E 44 3%2F%2B0Of8X7XND

000000F0 31 6A 6A 65 4C 34 25 32 42 44 69 51 64 78 6F 35 1jjeL4%2BDiQdxo5

00000100 34 6A 72 42 56 6A 47 65 32 44 79 63 76 65 62 4A 4jrBVjGe2DycvebJ

00000110 25 32 46 33 56 59 69 74 55 6F 6F 52 51 4F 51 77 %2F3VYitUooRQOQw

00000120 41 77 4D 44 AwMD

That is, the message to be sent to the bank is as follows:

PID=IEB0001&CRYPTO=1&DATA=Skh7aoFKVVJS%2FJEU0EptjihNRpDKmWbvUiwUPn%2BFSr%2FBhJYLGNK

D0h5%2F93fjwxx%2Br6PEDSDvjQJk6g%2BODL01f%2FrJ%2BkSjM0EFO%2BQZ6b8RT%2BWqxaRAoUkISdXK

b3C%2B%2Bd%2BAgxnJeyD3%2FU%2FO6J7YO4phYgQjfyOPGoZ2QCLWcAej3%2F%2B0Of8X7XND1jjeL4%2B

DiQdxo54jrBVjGe2DycvebJ%2F3VYitUooRQOQwAwMD

Decryption requires that the inverse operation of each individual step (3DES is identical to its own
inverse) be executed in reverse order.

Cryptographic functions library

The ekiCrypt library contains all the encryption algorithms necessary for bank communication. The
library contains the following functions:

Encryption (ekiEncodeUrl)

INT ekiEncodeUrl (LPSTR inBuffer, INT inBufferSize,

 LPSTR outBuffer, LPINT outBufferSize,

 INT cryptoType, LPSTR keyFilePath)

The message generated in URL format is thoroughly checked, URL-encoded, DES-coded, uuencoded
and adjusted to the URL format corresponding to the protocol. Under Win32, the DES key is stored in
the registry or in a file; in other systems it is stored in a file.

Parameters:
inBuffer: The buffer containing the URL to be encrypted.
InBufferSize: The length of the URL to be encrypted.
OutBuffer: The buffer in which the encrypted URL will be stored.
OutBufferSize: Size of the result

Input: The size of the buffer reserved for the encrypted URL,
minimum 4/3 * (inBufferSize + 12).

Output: The size of the encrypted URL.
CryptoType: The necessary encryption type.

0 - SSL
1 - DES
2 - RSA
3 - BROWSER

KeyFilePath: The path of the encrypting (DES) key file, if the key is stored in a file. NULL, if
the key is stored in the registry (only under Win32)

Decrypting (ekiDecodeUrl)
INT ekiDecodeUrl (LPSTR inBuffer, INT inBufferSize,

 LPSTR outBuffer, LPINT outBufferSize,

 LPINT cryptoType, LPSTR keyFilePath);

Retrieves the encrypted data from a coded, URL-format input, uudecodes and DESes it, then
performs various checks on it. It returns the message URL-encoded.

Parameters:
inBuffer: The buffer containing the encrypted URL.
InBufferSize: Length of the encrypted URL.
OutBuffer: The buffer in which the decrypted URL will be stored.
OutBufferSize Size of the result

Input: The size of the buffer reserved for the decrypted URL,
minimum 4/3 * (inBufferSize + 12).

Output: Size of the decrypted URL.
CryptoType

If the value is not NULL, this buffer will store the encryption type of the
resulting data, and the decrypted data will not contain the Crypto field.
If the value is NULL, the Crypto field will be left in the decrypted data.

KeyFilePath: The path of the encrypting (DES) key file, if the key is stored in a file. NULL, if
the key is stored in the registry (only under Win32)

Key structure

The structure detailed below is not identical to the binary content of the key file, since it only

contains a part of it for the ekiGetKeyInfo function.

typedef struct

{

char fname[13]; /* file name */

INT keySize; /* key size */

char id[4]; /* internal ID - theoretically this is the same

as the marketId*/

unsigned short version; /* version */

char marketId[4]; /* store ID */

time_t creation_time; /* time of key generation */

} TKeyInfo;

Key information inquiry (ekiGetKeyInfo)

INT EKIAPI ekiGetKeyInfo(TKeyInfo *ekiKeyInfo, char *keyFilePath,

 char *boltId);

Returns the data of the encryption key in the TKeyInfo structure.

Parameters:

ekiKeyInfo: Key data
keyFilePath: Location of key file
boltId: STORE ID

Possible return values:
UER_OK: Ok.
UER_NOMEM: Insufficient memory.
UER_BADSIZE: Output buffer size (outBufferSize) too small.
UER_NOKEY: Key not found.
UER_BADKEY: Wrong key structure.
UER_NOFILE: Key file not found.

Version number inquiry (ekiGetLibVersion)

INT EKIAPI ekiGetLibVersion(char *outBuffer, LPINT outBufferSize);

Inquiry of the encryption module version number.

Parameters:
outBuffer: This is where the version number is written in x.y.z format, terminated by \0.
outBufferSize: outBuffer size in bytes, leaving sufficient space for closing zeros.

Possible return values:
UER_OK: Ok.
UER_NOMEM: Insufficient memory.
UER_BADSIZE: Output buffer size (outBufferSize) too small.

 Encryption application (sakide)

Sakide is a command-line sample program that uses the library functions of ekiCrypt. Usage:

sakide [-e|-d] [-c <cryptotype>] [-i <-m <keyfile>>]

 [-p <path>] [–v] [-s <string>] [-S] [-u] [-V]

where

-e encryption operating mode
-d decryption operating mode
-c <cryptotype> the type of the encryption (typically 1)
-m <keyfile> key file name
-i provides information on the content of the key file
-p <path> path to the key
-v writes extra information on STDERR
-s <string> the messages to be processed
-S provides system information (if GNU libc is used)
-u performs a URL decoding of data before decryption.
-V indicates the version number of the application

If invoked without parameters, the application encrypts the data received from the STDIN, using the
encryption key of the store identifier contained in the PID parameter indicated in the message (if
PID=CIB0001 in the message, it uses the CIB.des file available in the current library).

Examples of usage of the sakide application:

./sakide –e –s „PID=CIB0001&TRID=1234123412341234&MSGT=20”

echo „PID=CIB0001&TRID=1234123412341234&MSGT=20”|./sakide

cat cleartext.dat|./sakide –v 2>&1

The latter provides information to the STDOUT channel (in practice, the STDERR is directed to
STDOUT, which is useful in error detection).

Two executable files are available for most of the supported operating systems, one of which is
dynamically linked and one is statically linked (the name of this latter one is sakide.static or
sakide_static). This latter one does not require any functions libraries at system level, that is, it can
be applied independently of the version of the operating system.

3D Secure

For security purposes, CIB Bank’s eCommerce acceptance server is provided with a 3D Secure
module. This service is ensured to all those cardholders who have a card provided with a Verified by
Visa (VISA) and SecureCode (MasterCard or Maestro) security component. In practice, 3D Secure
means a transfer from the bank’s payment page to the website of the card-issuing bank (or the card
company commissioned by it), where the customer can enter his/her password related to the card
that has been previously agreed with the issuing bank. The method of agreement can vary from bank
to bank. A successful transaction can only be created by providing the correct password, which is a
way of protecting the cardholder ant his/her card.

Possible errors, suggestions

 Prior to decoding, the data received from the bank must not be URL-decoded. Incoming data
must first be decoded by transferring them to ekiDecodeUrl, and then the resulting data
have to be URL-decoded. With some web servers it may happen that message 21 obtained in
step [9] is transferred to the server-side program URL-decoded. At this step, it is strongly
recommended that the obtained parameters be URL-encoded prior to processing.

 If connection is interrupted at any point of the protocol (e.g. the customer
disconnects the line or changes URLs, or there is a broken line between the bank and
the store), the transaction will terminate in the bank by time-out. Although the
period of time-out in the bank is 10-15 minutes, this period must, based on
experience indicating that this is not always appropriate, be programmed as
modifiable. The control is not returned by the bank to the store. If it is not clear to
the bank whether the transaction has been successful, the bank launches a ‘reversal’
after time-out, then closes the transaction, and the transaction data will no longer be
available to the counterparties. In this case the transaction must end with a time-out
in the store as well. This means that a transaction can only be considered successfully
closed if all the authorisation steps have been completed (the last one is MSGT=31

received in response to MSGT=31).

 The transaction status must be monitored by both parties (the BANK and the STORE)
so that they can both establish with certainty which state a transaction is currently in,
and whether the defined period has elapsed. If the transaction times out in any of its
phases, the bank’s duty is to reverse any successful authorisations and to close any
unsuccessful transactions, and the store’s duty is to delete the order and to close the
registration of the transaction on the store side. The status can be monitored using
message 33.

 It is important for the store to log each transaction step, making it possible for both
the bank and the store to retrospectively search the various steps through which a
given transaction has reached its final status.

Contact information

Name Phone E-mail Availability Area

Customer call
centre

+36-1-399-8899 Daily, between
0:00 - 24:00

Request for
information,
forwarding of
technical
inquiries

Bank’s
merchant

See:www.cib.hu,
list of branches

See:www.cib.hu,
list of branches

During the
bank’s open
hours

Contracts,
invoice-related
issues

Developer
support

 ecommerce@cib.hu During the
bank’s open
hours

Technical
assistance
during
development /
testing

http://www.cib.hu/
http://www.cib.hu/
mailto:ecommerce@cib.hu

