
CIB Bank Zrt. CIB Bank Ltd. H-1027 Budapest, Medve utca 4–14. H-1995 Budapest Telephone: (06 1) 423 1000 Fax: (06 1) 489
6500 Court of Registration: Company Court of the Metropolitan Court of Budapest Company registration no.: Cg. 01-10-041004 Tax
number: 10136915-4-44 Group tax number:: 17781028-5-44 Group Community VAT number: HU17781028 Stock exchange
membership: Budapest Stock Exchange Ltd. Operating licence number: 957/1997/F, III/41. 044-10/2002. BIC (SWIFT) code:
CIBHHUHB

Electronic Card Transactions on the Internet

CIB Bank Zrt.

Internet-based Card Acquiring Service

Technical Documentation

Developers guide

Contents

PREAMBLE.. 3

THE PAYMENT PROCESS ... 4

Preparation .. 4

Customer identification ... 4

Generating the transaction data ... 4

Authorisation ... 7

Transaction initialisation ... 7

Redirecting the customer to the payment page ... 7

Managing the customer’s return... 8

Customer information ... 8

Authorisation withdrawal .. 10

Refund ... 11

ENCRYPTION .. 12

COMMUNICATIONS.. 14

Webshop-Bank communication .. 14

Customer-Bank communication .. 14

PROBLEM MANAGEMENT .. 15

Encryption problems ... 15

Encryption keys ... 15

Applications ... 15

Data ... 16

Communication problems ... 16

Support .. 17

Preamble

This description is for developers who design payment modules for webshops, which are suitable for
the usage the API provided by CIB Bank.
The description is of a professional nature, and it assumes the knowledge of the programming
language used for its implementation.

Before reading this document, please read the reference description, where the steps referred to
herein are explained in detail.

The concrete examples included in the description are written in PHP language, since, based on our
experience, this language has been chosen most frequently for implementing web applications. In
these examples the same key is used for encryption as in the sample applications.

The payment process

Preparation

Customer identification

The customer must be identified prior to starting the bank transaction. Identification may be
executed in the generally accepted manner, provided that it complies with the following conditions:

 The customer can be clearly identified

 The customer’s notification channel/address can be determined

Identification is executed by the webshop, in which case the transaction receives an internal
identifier suitable for identifying either the customer or the session opened by the customer. This
internal identifier must be linked to the identifier of the bank transaction (see the following section).

Generating the transaction data

Based on the already identified customer, the related basket and the data provided by the bank at
the time of contract conclusion the parameters necessary for the bank transaction are to be
generated.

PID
This is provided by the bank to the merchant at the time of contract conclusion. The first 3 characters
correspond to the name of the encryption key, and the last four figures identify the virtual POS
terminal. The value in the examples used in this document is ‘IEB0001’, although under no
circumstances can this identifier be the same as the one that can be used in the bank test and on the
live server.

TRID

A unique identifier generated by the webshop. This is a 16-digit random number that identifies the
transaction throughout its lifecycle (authorisation, withdrawal of authorisation or refund). Since the
value of the TRID will be necessary during a possible future transaction analysis, please keep it for at
least one year in each case. If the webshop also uses its own identifier, you should link together the
two values.
Example of generation:

 mt_srand();

 $trid="";

 for ($i=0; $i<4; $i++)

 $trid .= mt_rand(1000, 9999);

Considering that the identifier is unique, the final value must be generated until it yields a value that
has never been used with any of the transactions.

UID
Although the value of the customer ID is irrelevant from the aspect of the bank message, it should be
linked to the webshop’s customer ID (keeping in mind that in the bank message this cannot be more
than 11 characters long).

CUR
The currency of the amount to be paid in the transaction in a 3-letter format complying with the
ISO3166 standard. Currently, the values of this field may be as follows:

 EUR

 HUF

AMO
For Hungarian forint the transaction amount must be an integer number, in the case of euro it must
be a fraction rounded to two decimals. Examples of amounts:

 $cur = "EUR";

 $orig_amo = 100;

 switch ($cur)

 {

 case "EUR":

 $amo = number_format($orig_amo, 2, ".", "");

 break;

 case "HUF":

 $amo = number_format($orig_amo, 0, ".", "");

 break;

 default:

 $amo = 0; // NOTE: this should not happen

 }

Note: although the authorisation message sent to the customer’s issuer bank contains the same
amount as the one indicated in the AMO value, the value deducted from the account may be
different, due to any conversion operations (e.g. the customer pays with a USD card).

TS
The system time of the hardware that runs the web server, in YYYYMMDDHHMMSS format:

 YYYY: calendar year, including the century (1970-2050)

 MM: month (01-12)

 DD: day (01-31)

 HH: hour (00-23)

 MM: minutes (00-59)

 SS: seconds (00-59)

 It is not a requirement that the system time be synchronised with an atomic clock, but the use of
another format may result in unsuccessful processing. Examples of timestamps:

 $ts = date("YmdHis");

AUTH
Type of authorisation. In case of web-based transactions its value must be ‘0’.

LANG
When the customer is redirected, this is the language of text on the payment page in the customer’s
browser. The accepted values are specified in the reference description. The use of a language code
other than those specified in the description may result in incorrect processing.

URL
The customer must always be directed to the bank’s payment page for entering the card data. After
authorisation, the customer is returned to the address provided in this parameter. The URL must
contain an absolute path address with an http or https protocol. It must not contain any parameters
(the customer’s session value can be easily retrieved based on the TRID value that is mandatorily
present in all the messages). The value of the URL must not be URL-encoded prior to encryption.

Authorisation

Transaction initialisation

Using the required parameters after generation and encryption, the bank’s merchant URL must be
called. Please note that you can only send the parameters that are necessary for the message, and
any deviation from this rule may result in incorrect processing. The RC value in the bank’s decrypted
message indicates whether the message has been successfully processed. If the message sent to the
bank cannot be interpreted at all, the bank gives an unencrypted error code that indicates the cause
of the error. Example of initialisation (for the interpretation of eki_* functions see sections
Encryption or Communication):

 $try = 0;

 do {

 generateparams(); $try++

 $msgt10clear = "PID=".$pid."&TRID=".$trid."&MSGT=10&UID=".$uid;

 $msgt10clear .= "&AMO=".$amo."&CUR=".$cur."&TS=".$ts;

 $msgt10clear .= "&AUTH=0&LANG=".$lang."&URL=".$url;

 $msgt10crypt = eki_encrypt($msgt10clear);

 $msgt11crypt = eki_call($eki_merchanturl, $msgt10crypt);

 $msgt11clear = eki_decrypt($msgt11crypt);

 parse_str($msgt11clear, $msgt11arr);

 $msgt11rc = $msgt11arr['RC'];

 } while (($msgt11rc == "02") && ($try <= 3));

Based on the example, outside the loop, the possible values of $msgt11rc and the related
interpretations are as follows:

 00: successful initialisation

 01: initialisation has failed due to other technical reasons

 02: initialisation has failed because the generated TRID is reserved

An unencrypted error code returned by the bank, if any, may refer to a general error, the correction
of which is described in the section entitled Error management.

If the value of $msgt11rc is ’01’, the transaction must be interrupted, and the customer must be
informed of the failure of the payment. In the case of a ’02’ code initialisation should be repeated
with a new TRID value. In the case of a successful initialisation ($msgt11rc=’00’) the TRID value must
be saved, because it is to be used in all the subsequent messages related to the transaction.

Redirecting the customer to the payment page

After successful initialisation the customer’s browser must be redirected to the bank’s customer URL.
Any method may be used for executing the redirection, its only purpose being to ensure that the
bank’s payment page (and nothing else) appears in the customer’s browser. The parameter of the
bank’s URL is the (no. 20) message that is necessary for an encrypted redirection. Example:

$msgt20clear = "PID=".$pid."&TRID=".$trid."&MSGT=20";

$msgt20crypt = eki_encrypt($msgt20clear);

header('Location: $eki_customerurl?$msgt20crypt');

As a result of this, the web server loses connection with the customer, who then returns to the
bank’s payment page to enter the card information.

Managing the customer’s return

After the card information has been entered, the bank redirects the customer to the address
indicated in the URL parameter provided in the initialisation message. Together with the redirection,
a GET parameter also arrives with the bank’s message containing the decryption key followed by the
transaction ID. Based on this, the webshop’s session can be assigned again to the bank transaction.

 $msgt21clear = eki_decrypt(rawurlencode($_SERVER['QUERY_STRING']));

 parse_str($msgt21clear, $msgt21arr);

 $trid = $msgt21arr['TRID'];

If the session cannot be identified based on the received $trid value (assuming that these two values
have previously been saved), the transaction must not be continued, and the customer must be
informed of the error.

Customer information

If the customer successfully returns to the webshop, he/she must be informed on the result of the
transaction there. The retrieval of the result and the closing of the transaction (MSGT32) must be
implemented similarly to the initialisation, as a server-to-server message.

 $msgt32clear = "PID=".$pid."&TRID=".$trid."&MSGT=32&AMO=".$amo;

 $msgt32crypt = eki_encrypt($msgt32clear);

 $msgt31crypt = eki_call($eki_merchanturl, $msgt32crypt);

 $msgt31clear = eki_decrypt($msgt31crypt);

 parse_str($msgt31clear, $msgt31arr);

 $msgt31rc = $msgt31arr['RC'];

 $msgt31rt = $msgt31arr['RT'];

 $msgt31anum = $msgt31arr['ANUM'];

The following parameters must be indicated on the confirmation page:

 Transaction ID (TRID)

 Amount (AMO)

 Currency (CUR)

 Result Code (RC)

 Result Text (RT)

 Authorisation code (ANUM)

The customer should be reminded to save the above data, and the data must be transferred to the
customer in an alternative way (by e-mail or sms).
Considering that the customer interrupts all contact with the webshop for the period of the
payment, it is possible that he/she does not return at all to the webshop (typically for technical
reasons). The payment can be completed nevertheless, but if the webshop does not close the result
within a predefined time interval (by default within 10-15 minutes) the bank reverses the transaction
(releases the reservation on the customer’s card). If the webshop requests the result of the
transaction prior to the completion of the payment, the bank’s server sends an error message. In
order to solve the timing problem resulting from the above, the bank provides an inquiry message
(MSGT33) which, apart from the card number, is fully identical to the MSGT32 message, but it
provides an RC value in any case. This message must be applied in parallel to the traditional payment
algorithm, using it once every minute after the customer’s redirection to the bank. Interpretation of
the RC codes provided in the response to the MSGT33 message:

 PR: the payment has not been completed, but it has not been interrupted either due to time-
out

 TO: the payment has been interrupted due to time-out

 00: the payment has been successfully completed

 Anything else: the payment has ended unsuccessfully. The most frequently occurring error
codes and their possible reasons are listed in Annex 3, irrespective of which, the application
must be made suitable for handling any other error codes, by creating a general error branch
that closes the transaction.

The sending of MSGT33 messages must continue until the RC value of the returning message is ’PR’.
If the RC value of the received MSGT31 response message is ’00’, the webshop may send a closing
message (MSGT32), thus finalising the successful payment. In this case the bank does not release the
reservation, regardless of whether the specified time interval has elapsed (just as if the customer had
successfully returned to the webshop).

If the customer only returns to the webshop after the closure, he/she must be informed based on
the already known data, and a new closing is not possible.

The webshop may, after returning the customer to the bank, retrieve all the previous steps of the
transaction, in addition to the current status of the payment:

 $msgt37clear = "PID=".$pid."&TRID=".$trid."&MSGT=37&AMO=".$amo;

 $msgt37crypt = eki_encrypt($msgt37clear);

 $msgt38crypt = eki_call($eki_merchanturl, $msgt37crypt);

 $msgt38clear = eki_decrypt($msgt38crypt);

 parse_str($msgt38clear, $msgt38arr);

 $msgt38rc = $msgt38arr['RC'];

 $msgt38hist = $msgt38arr['HISTORY'];

The ’RC’ value in the block indicates whether the message has been successfully executed (00:
successful, 01: an error occurred), in case of successful execution, the string in the ’HISTORY’ element
contains the individual statuses, in their chronological order. A list of possible values is contained in
the reference description (3.1 Field definitions, HISTORY). The message also signals an error even if
the transaction has been initiated but none of the statuses indicated in the above description has
occurred (e.g. the customer has not yet been directed to the payment page).

Authorisation withdrawal

A successful and closed reservation (the RC value of a MSGT31 message sent in response to a
MSGT32 message is ’00’) may also be released by the webshop. The effect of this is the same as
when the bank does so after a time-out period. Prior to the release it is necessary to check whether
the transaction can be actually released or not. This can be achieved using the MSGT70 message,
which supplements the transaction authorisation result with the current status of the settlement
(MSGT71 STATUS field). If the status is ’10’ (reserved but not yet debited), the transaction can be
reversed using the MSGT74 message. In case of a successful reversal the value of the STATUS field in
the response message (MSGT75) is ’40’, after which the MSGT71 message will provide the same
value. A withdrawn reservation cannot be debited.

 if ($msgt31rc = $msgt31arr['RC']) {

 $msgt70clear = "PID=".$pid."&TRID=".$trid."&MSGT=70&AMO=".$amo;

 $msgt70crypt = eki_encrypt($msgt70clear);

$msgt71crypt = eki_call($eki_merchanturl, $msgt70crypt);

$msgt71clear = eki_decrypt($msgt71crypt);

parse_str($msgt71clear, $msgt71arr);

if ($msgt71arr['STATUS'] == "10") {

 $msgt74clear = "PID=".$pid."&TRID=".$trid."&MSGT=74&AMO=".$amo;

 $msgt74crypt = eki_encrypt($msgt74clear);

$msgt75crypt = eki_call($eki_merchanturl, $msgt74crypt);

$msgt75clear = eki_decrypt($msgt75crypt);

}

 }

Refund

This API message provides a wayto refund an already debited transactions, either partially or in full,
within one calendar year. The minimum value that can be set as amount to be retransferred is EUR 1
or HUF 100. If the original debit was executed with an amount lower than this, no refund is permitted
for that specific transaction. After setting the amount to be refunded (MSGT80) and requesting a
refund (MSGT78) the bank refunds the set amount to the customer’s card. By default (ignoring the
MSGT80 message) the operation is executed with 0 amount, and therefore the use of the MSGT80
message prior to the refund is strongly recommended.

 if ($msgt31rc = $msgt31arr['RC']) {

 $msgt70clear = "PID=".$pid."&TRID=".$trid."&MSGT=70&AMO=".$amo;

 $msgt70crypt = eki_encrypt($msgt70clear);

$msgt71crypt = eki_call($eki_merchanturl, $msgt70crypt);

$msgt71clear = eki_decrypt($msgt71crypt);

parse_str($msgt71clear, $msgt71arr);

$status = $msgt71arr['STATUS'];

if (($status == "20") || ($status == "30")) {

 $msgt80clear = "PID=".$pid."&TRID=".$trid;

 $msgt80clear .= ."&MSGT=80&AMOORIG=".$amo."&AMONEW=”.$amonew;

 $msgt80crypt = eki_encrypt($msgt80clear);

$msgt81crypt = eki_call($eki_merchanturl, $msgt80crypt);

$msgt81clear = eki_decrypt($msgt81crypt);

 $msgt78clear = "PID=".$pid."&TRID=".$trid;

 $msgt78clear .= ."&MSGT=78&AMO=".$amo;

 $msgt78crypt = eki_encrypt($msgt78clear);

$msgt79crypt = eki_call($eki_merchanturl, $msgt78crypt);

$msgt79clear = eki_decrypt($msgt79crypt);

}

 }

The above example retrieves the transaction status, and if the status is ‘debited’ (in $amo value), it
sets the amount to be refunded ($amonew), then launches a refund. In this case the status of the
refunded transaction changes to ’50’. Although it is not possible to initiate a new refund for a
previously refunded transaction, the amount to be refunded may be modified several times prior to
the refund.

Encryption
All the messages sent to the bank must be encrypted prior to sending. The steps of the encryption
are described in the reference manual, in addition to which an encryption sample application written
in JAVA, PHP and C# languages is attached as an annex to this documentation. A list of third-party the
libraries necessary for translating the sample applications is contained in the comment part of each
source.
In addition to the algorithm, encryption also requires an encryption key, which is in each case
provided to the merchant by the bank. The key names are always identical to the first 3 characters in
the value of the PID parameter to be used in the individual messages. The version with a .reg
extension is recommended for Windows-based systems. After registration, the key will be stored
under the \HKLM\Software\IEB\Eki key, the key name is the same as the file name, and the only
value (des) contains the full key file in binary format. The use of the file with a .des extension is
recommended to webshops using a non-Windows system, and its binary content is fully identical to
the value that can be stored in the registry. The encryption key is in the last 24 byte of the file in
key1, key2, iv order (the keys and the initialisation vector are 8 byte long each). Encryption is to be
implemented applying the 3DES CBC method. Example of encryption (it is to be assumed that the key
file is located in the current library):

 function eki_encrypt($cleartext) {

 $arr=split("&",$cleartext);

 $ciphertext="";

 $pid="";

 for ($i=0;$i<count($arr);$i++) {

 if (strtoupper($arr[$i])!="CRYPTO=1")

 $ciphertext.="&".$arr[$i];

 if (substr(strtoupper($arr[$i]),0,4)=="PID=")

 $pid=substr(strtoupper($arr[$i]),4,7);

 }

 $ciphertext=substr($ciphertext,1);

 $ciphertext=rawurlencode($ciphertext);

 $ciphertext=str_replace("%3D","=",$ciphertext);

 $ciphertext=str_replace("%26","&",$ciphertext);

 $crc=str_pad(dechex(crc32($ciphertext)),8,"0",STR_PAD_LEFT);

 for ($i=0;$i<4;$i++)

 $ciphertext.=chr(base_convert(substr($crc,$i*2,2),16,10));

 $pad=8-(strlen($ciphertext) % 8);

 for ($i=0;$i<$pad;$i++)

 $ciphertext.=chr($pad);

 $f=fopen(substr($pid,0,3).".des","r");

 $keyinfo=fread($f,38);

 fclose($f);

 $key1=substr($keyinfo,14,8);

 $key2=substr($keyinfo,22,8);

 $iv=substr($keyinfo,30,8);

 $key=$key1.$key2.$key1;

 $td=mcrypt_module_open("tripledes","","cbc","");

 mcrypt_generic_init($td,$key,$iv);

 $ciphertext=mcrypt_generic($td,$ciphertext);

 mcrypt_module_close($td);

 $pad=3-(strlen($ciphertext) % 3);

 for ($i=0;$i<$pad;$i++)

 $ciphertext.=chr($pad);

 $ciphertext=base64_encode($ciphertext);

 $ciphertext=rawurlencode($ciphertext);

 $ciphertext="PID=".$pid."&CRYPTO=1&DATA=".$ciphertext;

 return $ciphertext;

 }

Decryption is to be interpreted similarly (each response message sent by the bank is encrypted):

 function eki_decrypt($ciphertext)

 {

 $arr=split("&",$ciphertext);

 $cleartext="";

 $pid="";

 for ($i=0;$i<count($arr);$i++) {

 if (substr(strtoupper($arr[$i]),0,5)=="DATA=")

 $cleartext=substr($arr[$i],5);

 if (substr(strtoupper($arr[$i]),0,4)=="PID=")

 $pid=substr(strtoupper($arr[$i]),4,7);

 }

 $cleartext=rawurldecode($cleartext);

 $cleartext=base64_decode($cleartext);

 $lastc=ord($cleartext[strlen($cleartext)-1]);

 $validpad=1;

 for ($i=0;$i<$lastc;$i++)

 if (ord(substr($cleartext,strlen($cleartext)-1-$i,1))!=$lastc)

 $validpad=0;

 if ($validpad==1)

 $cleartext=substr($cleartext,0,strlen($cleartext)-$lastc);

 $f=fopen(substr($pid,0,3).".des","r");

 $keyinfo=fread($f,38);

 fclose($f);

 $key1=substr($keyinfo,14,8);

 $key2=substr($keyinfo,22,8);

 $iv=substr($keyinfo,30,8);

 $key=$key1.$key2.$key1;

 $td=mcrypt_module_open("tripledes","","cbc","");

 mcrypt_generic_init($td,$key,$iv);

 $cleartext=mdecrypt_generic($td,$cleartext);

 mcrypt_module_close($td);

 $lastc=ord($cleartext[strlen($cleartext)-1]);

 $validpad=1;

 for ($i=0;$i<$lastc;$i++)

 if (ord(substr($cleartext,strlen($cleartext)-1-$i,1))!=$lastc)

 $validpad=0;

 if ($validpad==1)

 $cleartext=substr($cleartext,0,strlen($cleartext)-$lastc);

 $crc=substr($cleartext,strlen($cleartext)-4);

 $crch="";

 for ($i=0;$i<4;$i++)

 $crch.=str_pad(dechex(ord($crc[$i])),2,"0",STR_PAD_LEFT);

 $cleartext=substr($cleartext,0,strlen($cleartext)-4);

 $crc=str_pad(dechex(crc32($cleartext)),8,"0",STR_PAD_LEFT);

 if ($crch!=$crc)

 return "";

 $cleartext=str_replace("&","%26",$cleartext);

 $cleartext=str_replace("=","%3D",$cleartext);

 $cleartext=rawurldecode($cleartext);

 return $cleartext;

 }

Until the time of the activation, the bank issues two key pairs: a test key pair and an activation key
pair. The test key pair is only suitable for communication with the bank’s test server, and the
activation key pair is only suitable for communication with the bank’s live server. If used incorrectly,
the bank’s server sends a general error message (RC=S01). Considering that the test key pair has the
same name as the activation key pair (in order to facilitate activation), it is recommended to store
the checksum of the keys (e.g. MD5) so that in the future they can be clearly identified.

Communications

Webshop-Bank communication
All the merchant’s messages are exchanged with the bank’s server via a http channel, using the URL
specified by the bank. The generated and encrypted parameters can be forwarded to the bank’s
server using the GET or the POST method. The bank’s response always arrives in the content part of
the requested message, in text/plain format. If the request is processed successfully, the http status
of the connection is 200, and the response arriving in the content is encrypted based on the EKI
standard. In case of incorrect processing the http status is not 200 (typically, it is 403 or 500), the
response in the content is not encrypted and it only contains the error code (e.g. if the request
cannot be decrypted, the http status is 403 and the content is ’RC=S01’). Example of
sending/receiving merchant messages:

 function eki_call($url, $params)

 {

 $ch = curl_init();

 curl_setopt($ch, CURLOPT_URL, ($url);

 curl_setopt($ch, CURLOPT_POST, 1);

 curl_setopt($ch, CURLOPT_POSTFIELDS, $params);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 curl_setopt($ch, CURLOPT_TIMEOUT, 30);

 $http_response = curl_exec ($ch);

 $http_status = curl_getinfo($ch, CURLINFO_HTTP_CODE);

 curl_close($ch);

 if ($http_status != "200") {

 echo "HTTP STATUS ".$http_status.", EKI error: ".$http_response;

 exit;

 }

 $ekiCryptedResponse = $http_response;

 return($ekiCryptedResponse);

 }

Customer-Bank communication
Any method can be used to redirect the customer to the bank’s payment page. In the case of a PHP
code, if no content has been transferred to the browser as yet, the use of the header() function is
recommended.

 header("Location: ".$eki_customerurl."?".$msgt20crypt);

 exit;

In addition to the above, it is also possible to use JavaScript
window.location.replace(%customerurl%), or the html <meta http-equiv="refresh" content="0;
url=%customerurl%" /> tag, where % customerurl% is the whole GET-parametered payment page
URL of the bank.

Problem management
In the above sections of this documentation we assumed that all the circumstances necessary for the
execution of a successful transaction are present. In a live environment, however, any of the steps
detailed in the above points may result in an error. The purpose of this section is to provide
assistance in detecting and eliminating these errors.

Encryption problems

A successful encryption/decryption requires the availability of the encryption key provided by the
bank to the merchant, the flawlessly operating encryption application and the correctly compiled
processable message. The absence of any of the above conditions automatically entails the
erroneous execution of the operation.

Encryption keys

the bank provides the webshop with two keys (key packages). Since the bank’s encryption algorithm
is a synchronous encryption, the test key can only be used for the bank’s test server and the
activation key can only be used for the live server. The test key and the activation key are different in
terms of content, but not in names. If the bank’s response code is continuously 403 and the content
is ’RC=Sxx’, this is most likely due to most likely due to an error of the key. It is possible (though
unlikely) that the key got damaged during the period between its issue by the bank and the
completion of installation on the web server, in which case it is advisable to verify the checksum (e.g.
MD5).
The bank makes available the keys to the merchant in two formats: in .reg format (typically for
Windows-based systems) and in .des format (typically for Unix-based systems). The former needs to
be installed in the registry of the webshop.
During installation it must be ensured that (only) the technical user performing the encryption
(typically the one operating the web server) can read the key files. It must also be ensured that the
first 3 characters in the name of the encryption key (only capital letters) is exactly identical to the
first 3 characters in the value of the PID parameter in the message that is, or is to be, encrypted.

Applications

Each step of the EKI encryption protocol is obligatory. In case of native implementation the final
result of the series of encryption steps may be different from the expected result. This can be traced
back to a faulty operation of any of these steps. When developing the application, the following must
be kept in mind:

 When converting to text type, the correct encoding (ASCII) must always be provided, or, as
long as possible, it is advisable to store the result in binary format.

 When calculating the CRC32, the big endian order must be applied.

 If the CRC32 value calculated during decoding is different from the received value, this
qualifies as an error.

 If the applied 3DES encryption function uses implicit padding, then the message in front of it
must not be padded.

 The RFC 1738 standard must be applied for URL encoding.

The above list is not complete, but it contains the most frequent errors.
As far as possible, the use of the attached example codes and the sakide functions library (and
application) is recommended. In case of problem, running the sakide application with a '-v' switch

will give a more detailed error analysis. If the calling application can only handle the standard output,
it is advisable to redirect the standard error channel:

 /<path>/<to>/sakide –v –e –s”<string_to_encode>” 2>&1

Data

If, in response to the merchant’s message, the status code of the bank’s server is 500 and the
response message is ’RC=Dxx’, then it is likely that the error is in the transferred data. When putting
together the data, the following must be kept in mind:

 The message must contain all the parameters listed in the reference guide.

 All the parameters must have the value format indicated in the guide

 During the lifecycle of each transaction, all the related messages must contain the same TRID
value

 The amount to be authorised must be the same in each message related to the same
transaction (e.g. because of an unsolved error branch it may happen that the confirmation
message contains a 0 amount)

Communication problems
Messages are sent and received via the standard protocol (http), but generally not through the port
assigned to it by default (80). This may cause a time-out, which eventually results in transaction
failure or in the non-operation of the entire payment method. Whenever a communication problem
is detected, the following should be checked:

 Correctness of the name of the bank’s server at the place of calling (the address of the bank’s
test server is not identical to the live address)

 The web server’s ability to identify the name of the bank’s server

 Accessibility of the IP address and the target point of the bank’s server on any traffic-
limitation devices (e.g. firewall) before the web server

Generally, the communication problem can be reproduced on the web server using command-line
devices (curl, wget) When reporting an error, please attach the related outputs as well.

Support

The bank provides free assistance to the merchant for the investigation of any problematic
transactions. The investigation must be requested by e-mail (ecommerce@cib.hu, with the text
“Transaction investigation request <merchant identifier>” in the subject line), specifying the
following in the message:

 Transaction ID of the problematic transaction

 Description of the problem, as precisely as possible

 Screenshot, if feasible

 IP address of the merchant’s server

 The sent/received encrypted messages provided with time stamps

mailto:ecommerce@cib.hu

